The University of Jordan School of Engineering Computer Engineering Department Fall 2023/2024

Course	Parallel Processing – 0907536 (3 Cr. – Core Course)		
Catalog Description	Flynn's taxonomy, SIMD processors, MIMD processors, Shared-memory and Distributed- memory parallel architectures. Interconnection Networks and Topologies. Parallel Programming. Problem Decomposition. Synchronization Methods (Barriers, Critical Sections, Locks, Atomic operations). OpenMPI Programming. MPI Programming. Parallelization techniques, Speedup and Efficiency. Parallel Algorithms.		
Prerequisites by Course	Computer Organization and Architecture (2) (0907432)		
Prerequisites by Topic	 Students are assumed to have had sufficient knowledge pertaining to single-core processor architecture: datapath design and control, pipelining, superscalar execution, caches Basic data structures: stacks, queues, and graphs Execution analysis of algorithms using asymptotic notations C++ programming in Linux 		
Textbook	P. Pacheco, An Introduction to Parallel Programming, Morgan Kaufmann, 2011.		
References	 Ananth Grama, Anshul Gupta, George Karypis, Vipin Kumar., Introduction to Parallel Computing, 2nd edition, 2010. D. Culler and J.P. Singh with A. Gupta. Parallel Computer Architecture: A Hardware/Software Approach, Morgan Kaufmann, 1998. Michael J. Quinn, Parallel programming in C with MPI and OpenMP, 2003. 		
Website	Microsoft Teams		
Schedule & Duration	15 Weeks, 45 lectures, 50 minutes each (including exams)		
Student Material	Text book, class handouts, lecture notes, and any additional reading assigned by the instructor		
College Facilities	Classroom with whiteboard and projection display facilities, library, and computer laboratory.		
Course Objectives	 The objectives of this course are: Introduce students to the technological changes in designing and building parallel processors Learn how to write shared-memory parallel programs in OpenMP and analyze their performance Learn how to write distributed-memory parallel programs in <i>MPI</i> and analyze their performance Study some commonly-used parallel algorithms 		

Course Outcomes and Relation to ABET Program Outcomes	 Upon successful completion of this course, a studen Write and execute a parallel program [1]. Analyze the performance of a parallel program Learn commonly-used parallel algorithms in mapplications [1]. 	nt should be able to: [1]. Iodern high-performance computing
Course Topics	 Motivation: why parallel computing? (Chapter Parallel hardware and parallel software (Chapter Shared-memory programing with <i>OpenMP</i> (Chapter Distributed-memory programing with <i>MPI</i> (Chapter 5) Parallel program development (Chapter 6) 	1) ter 2) apter 5) apter 3)
Computer Usage	Practical aspects of the course will be covered by	y programming assignments
Policies	 Attendance is required. Class attendance will b university's polices will be enforced in this rega All submitted work must be yours and cheating Check department announcements at: <u>http://w Engineering-Department/369639656466107</u> f announcements. 	e taken every class and the ard. g will not be tolerated <u>vww.facebook.com/pages/Computer-</u> for general department
Grading policy	Programming assignments Midterm Exam Final Exam	20% 30% 50%
Instructors	Dr. Fahed Jubair, <u>f.jubair@ju.edu.jo</u> Room: CPE 417 Office Hours: Sunday and Thursday: 12:00–1:00. Wednesday: 12:30-1:30	
Class Time and Location	Section 1: Sunday, Tuesday, and Thursday: 10:00-2	11:00, Class Room: CPE 001

Program Outcomes (PO)

1	an ability to identify, formulate, and solve complex engineering problems by	
2	an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors	
3	an ability to communicate effectively with a range of audiences	
4	an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts	
5	an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives	
6	an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions	
7	an ability to acquire and apply new knowledge as needed, using appropriate learning strategies.	